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Hierarchical associative networks 

C Cortest, A Kroght and J A Hertz$ 
t Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen 0, Denmark 
j: Nordita, Blegdamsvej 17, 2100 Copenhagen 0, Denmark 
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Abstract. We study a modified Hopfield model of associative memory with a learning rule 
proposed by Personnaz et ai, for the special case of ultrametrically correlated patterns. 
The formula for the synaptic strength tells the ‘teacher’ how much stress to put on details 
compared to averages at each level. It is still a local rule if we assume that the ultrametric 
correlation structure of the patterns is given a priori. The result is also given in terms of 
the Parisi function q ( x ) .  In a special limit we get the same result as Parga and Virasoro. 

1. Introduction 

A popular model for investigating associative memory in neural networks is a system 
of N two-state spins (neurons) S, = *l .  The spins are highly internally connected with 
synaptic strengths Jy between spins i and j .  The connections Jl, are constructed in 
such a way that certain spin configurations (patterns), representing the information to 
be stored, are dynamically stable states. If one wants to store uncorrelated patterns, 
the prescription for the J,, is quite simple (Hopfield 1982), but this algorithm fails in 
more general cases. In this paper we study how to store patterns which are hierarchically 
correlated. 

In the Hopfield model, as in many other models, a biologically motivated Hebb-type 
rule (Hebb 1949) is used. If the system has to learn a new pattern (f, i = 1 , .  . I ,  N ,  
the Ju are modified by AJl, = tY(,”. This simple rule is called local because it only 
involves [f and 6;. Based on the pseudo-inverse method (Kohonen 1977, 1984) 
Personnaz et a1 (1985) have recently proposed a non-local learning rule, which has 
been studied and further developed by Kanter and Sompolinsky (1987). This model 
is capable of storing any set of linearly independent patterns, but when adding a new 
pattern one has to know all the previous stored patterns to calculate the new synaptic 
strengths. 

In this paper we consider a class of problems which lies intermediate in generality 
between the artificial uncorrelated limit considered by Hopfield and the completely 
general case discussed by Personnaz er a1 and Kanter and Sompolinsky. This is the 
case of hierarchically (ultrametrically (Rammal er a1 1986)) correlated patterns. This 
is of special interest for two reasons. First, hierarchical organisation is a widespread 
feature of data structures in general, and most people have at least the subjective 
impression that their own memory in particular is hierarchical. Second, the discovery 
of ultrametric structure in the states of the SK spin glass (MCzard et a1 1984a, b) makes 
it interesting to look for other systems with this structure. 
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We will see that these hierarchically ordered memories can be induced by a local 
learning rule quite similar to the Hopfield-Hebb one; the difference is simply that the 
patterns must be given specific weights which depend on the parameters characterising 
the hierarchical structure, e.g. on the Parisi function q ( x )  (Parisi 1979, 1983). 

Finally we establish the connection to a result of Virasoro and Parga (Virasoro 
1986, Parga and Virasoro 1986). They have constructed a learning rule for hierarchical 
patterns by another method, based directly on the known ultrametric structure of the 
SK spin glass (MCzard and Virasoro 1985). 

We formulate the problem in the following way. The correlation between the p 
learned patterns 5' are characterised by their ( p  x p )  mutual overlap matrix 

and the learning rule of Personnaz et a1 and Kanter and Sompolinsky is 

For Q-' to exist, the patterns have to be linearly independent. The storage capacity 
clearly cannot exceed the number N of spins in the system. This learning rule is in 
general non-local because the calculation of Q-' requires knowledge of all the 5;. 
However, it is local if the overlap matrix of the system is given a priori. We expect 
that this kind of situation is rather common-we have an ensemble of many different 
sets of patterns, which share certain statistical properties, described by the Q matrix. 
The question is how to imprint patterns with the particular kind of correlations specified 
by a given Q. The ensemble we study here is one in which Q has a hierarchical 
(ultrametric) structure, but the general idea could obviously be applied to other 
ensembles, specified by other kinds of structure in Q. 

We suppose that our ultrametric tree of patterns has n levels. An example is shown 
in figure 1. At the mth level each group of patterns consists of I ,  subgroups from the 
(m-1)th level, and two patterns from the same group but different subgroups have 
overlap qm. The overlap matrix Q has the Parisi form 

Q n - 1  

Q n = [  qn Q n - l  , . . qn ] 
Q n - 1  

(3) 

where the k n - l x k n - l  matrix Q n - ]  has the same form as On. ( In  terms of the I,, 
k ,  = 1 , 1 2 . .  . I,,,.) Our central task is to invert Qn. 

Figure 1. Ultrametric tree of p = 24 patterns with n = 3 levels. In this example I, = 4, I, = 2 
and 1 , = 3 .  
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2. The inverse matrix 

The first row of the overlap matrix has the form 

9041 . . . 9192. * 92 * . q m .  . . q m .  . . q n  * q n  (4) 

where element qm is repeated I ,  . . . 1,,-,(1,,, - 1)  times. (Of course qo = 1.) The other 
rows contain exactly the same number of each element, the blocks being just permuted. 

We find the (unnormalised) eigenvectors in the way Ogielski and  Stein (1985) d o  
for the case 1, = 2 for all m. All but one are constructed in the following way: for 
O s  m < n the vector components are partitioned into groups of k,  elements. In one 
of the groups all the elements are + l ,  in another, -1, the rest being zero. This gives 
us I , .  . . 1 m + 2 ( 1 m + l  - 1)  linearly independent eigenvectors each having the same eigen- 
value 

77, = q o  + ( I ,  - I )q ,  + . . . + I ,  . . . 1 - 1 ( Im - l )qm - I, . . . I&,+ 1 O s m < n .  ( 5 )  

For m = n we find the eigenvector (1 ,1 , .  . . , 1)  with the non-degenerate eigenvalue 

7, = q o  + ( I ,  - 1 ) y, + . . . + 1, . . . 1, - 1 (1,  - 1 ) q n .  ( 6 )  

By formally putting q,+l  = 0 we can write all the eigenvectors in the following way: 

77, = qo+ ( k ,  - l )q ,  + * . . + ( k m  - km-llqm - kmqm+, O s m s n .  (7 )  

We will assume that all the q are non-negative, and that they are decreasing: qo> 
q ,  > , . . > q,, giving positive increasing eigenvalues 

77, - 77 m - 1  = km ( q m  - q m + l )  > 0 

770 = 4 0  - 91 ’ 0. 

O < m s n  (8) 

(9) 

Therefore the overlap matrix Q has an  inverse matrix P. By using the well known 
inversion formula from linear algebra for the elements of P 

(-l)’+’det Q, 
det Q p,  = 

(where Q,, is the matrix Q without row i and column j )  it is easily seen that P has 
the same structure as Q but with elements pm, m = 0, . . . n instead of q m .  The eigen- 
values of P are then 

The Lm will have the same degeneracy as the 7, and they will just be equal to 1/77,,,. 
Thus from (8) we obtain the formula 

and po-pI = l / v o ,  corresponding formally to 1/7-, = 0. It is now easy to calculate 
the pm recursively. 
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3. The connection strength J 

From the matrix elements of P = 0-' we are able to calculate the connection strength 
JI, from (2). Let E ,  be a k,  x k,  matrix with all elements equal to 1. Then we can 
write P as a sum of n + 1 p x p matrices in the following way: 

where I is the unit matrix. On each level m of the hierarchical tree we average spin j 
over the patterns belonging to the same group. This gives us the mean values 

.p 1 c k c  k n / k ,  (14) 

and formulae (2) and (12) lead to 

After a little algebra this can be put in the form 

where the notation [XI means x should be rounded up to the next integer. This form 
shows explicitly how one can teach the system hierarchically ordered patterns. One 
teaches first the mean patterns ( y v l ,  then the next level details, then the details within 
each of these groups, and so on. Regarding the successive levels of detail as the basic 
pattern set, the procedure is very much like the Hebb rule except for the weights k,/ q,,, 
associated with the details at level m. This factor tells the teacher how much stress to 
put on details, relative to gross features, at each level. We also note that the rule in 
this form (or in the form (15)) is local in the sense mentioned in the introduction. If 
we are looking for biological relevance, this is a desirable feature, as stressed by Kanter 
and Sompolinsky. 

4. Writing the result in terms of the Parisi function q ( x )  

We know from spin glass theory (Parisi 1979,1983) that a convenient way to parametrise 
an ultrametrically correlated set of configurations is by the order function q ( x ) ,  or, 
equivalently, by its inverse function x ( q ) .  Our result (16) can be written very neatly 
in terms of q ( x ) .  

The function x( q )  is the cumulative overlap distribution function. For our patterns, 
we have 

xg= 1 (18) 
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giving 

This allows us to write 7, as an integral of q(x),  where q(x)  is defined to be equal 
to qm on the interval [x,, x ,+~] :  

Introducing this notation we can rewrite the reciprocal of the weight coefficients k m / T m  
which appear in (16) as 

We hope the meaning of the ( ) notation is clear. In words, the reciprocal of the 
learning strength to be given to data at correlation level q (which has cumulative 
overlap probability x(q))  is just the difference between the average of q(x)  over all 
larger cumulative overlaps and q itself. 

5. The Parga and Virasoro learning rule 

Virasoro (1986) investigated an ultrametric hierarchy in which there were only two 
levels present. His overlap matrix looks like this 

where 

That is, the overlap between the k,  patterns in group a is q,; the different groups 
need not have the same size. Thus in one way this model is less general than the one 
we have considered in the preceding sections, while in another way it is more so. 

This hierarchy can be looked on as n small one-level hierarchies giving independent 
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contributions J ;  to J,,: 
n 

J,, = J ; .  
a = l  

The JpI can be calculated with the help of equation (16): 

where 5: means the average of 5Yp in group a. When k,  is large, this gives exactly 
the result of Virasoro: 

although he reached his result by a different argument. 

(1986) for a multilevel hierarchy. They propose 
Formula (26) is a special case of a general formula proposed by Parga and Virasoro 

This resembles our formula (16), but there is a difference in the weight coefficients, 
as one can see from (21). Equivalently we get from (8) 

so in the limit k , - , / k , < <  1 (infinite branching ratio) the results are the same. 
We know from Kanter and Sompolinsky (1986) that our model has a single critical 

temperature below which all learned patterns become stable. In general the learning 
rule of Parga and Virasoro would lead to different critical temperatures for the different 
groups of patterns. However, this question, and even that of the stability of the different 
memories at T = 0, have not been systematically studied yet. 

6. Conclusion 

We have shown how hierarchically correlated patterns can be embedded in a Hopfield- 
style network with a rather simple modification of the simple Hebb learning rule. The 
new rule is still local; the only change is in the relative weight given to components 
of the patterns at different levels of the ultrametric hierarchy. Closely related results 
have been obtained by Parga and Virasoro (1986) and Feigelman and Ioffe (1986), 
but the present method gives direct insight into the form of the result. 

We note again that the maximum capacity of the model is N patterns. If one wants 
to store more, one must introduce three-spin or higher-order couplings. A start in this 
direction for hierarchical patterns has been made by Feigelman and Ioffe (1986). 

Possible extensions of this work include studies of the thermodynamics of the 
network at finite temperature, the effects of fluctuations around the ideal ultrametric 
structure discussed here, and what happens in the presence of 'forgetting' as discussed 
for the uncorrelated-pattern case by MCzard er af (1984a, b) and Parisi (1986). 
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